Project #2 - Beam Deflection

Maggie Anthes & William Goldman
12/15/25

Part 1: Bending of Steel and Aluminum Beams

Givens:
e Beams' cross section: 1.5875 mm x 12.7 mm
e Steel's Elastic modulus (E) = 200 GPa
e Aluminum’s Elastic modulus (E) = 70 GPa

**Note that throughout this report we choose to ignore the distributed weight of the beam to simplify the calcu-
lations (as instructed).

Experimental Calculations

We performed testing for this section on both steel and aluminum. The two support conditions were simply sup-
ported and cantilevered. The load for both conditions and both materials was 100g (1N). The following data were
recorded:

Cantilevered:

e deflection of Steel: 0.1 mm

e deflection of Aluminum: 0.26 mm

Rk, TR

(a) Cantilevered: Aluminum Under 100g Load (b) Cantilevered: Steel Under 100g Load

Figure 1. Experimental setup for aluminum and steel cantilever beams.

Simply Supported
e Deflection of aluminum: 0.93 mm

e Deflection of steel: 0.34 mm
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(a) Simply Supported: Aluminum Under 100g Load (b) Simply Supported: Steel Under 100g Load

Figure 2: Comparison of simply supported experimental setups

Theoretical Calculations

Support Condition: Cantilevered

100g load at x = 4

Fixed End”’

2 Free End

Measured point of deflection
atx =06

Figure 3: A cantilever beam showing the applied weight force

i —,—— 5 Support Reactions:
([~  £h-[A=]
[ 4cm { > F,=0=A,-1N

Ay 1N | o S My=0=M— 1(0.04m)

} 6cm \
M = 0.04Nm

(a) Free-Body Diagram of the Cantilevered Beam
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Ma VoMo Internal Forces Calculations:
A X 1 For 0 < x < 4:
A © XF=0=A~V[V=1N]
(a) Cut Section 0 < x < 4 ® > Mur=—Xx+My=—x+0.04
e M(0.04) =0.04 —0.04,0 =
0+C,C1=0
1 X 1
MA Vv Mo
A For 4 < x < 6:
1 / 1
l e Y F=0=A—IN+V,[V=0N]
A 1N
g L4 Z Met =0+ G
(b) Cut Section 4 < x < 6
Figure 5. Shear and Moment Calculations
M (Nm)
V (N) 0.04
1 ‘
- > x (cm » x (cm

0 2 4 6 (cm) 0 2 4 6 (cm)

(a) Shear Force Diagram V/(x)

(b) Bending Moment Diagram M(x)

Figure 6: Internal force diagrams for the Cantilevered beam

Maximum Bending Stress:

e Using the Flexure formula and M.« = 0.04: 0 =

Elastic Curve:
e 0<x<4
- Elv] = M(x) = x — 0.04
—0.04x + ¢4
- Elvy = g — 0'024)(2 + Cix+ G

e 4 < x<6
— Elv, =M(x) =0
- Elv,=Cs

- E/V2=C3X+C4

Elastic Curve Final:

O0<x<4

o Elvi =% —0.02x2

Deflection: We know the moment of inertia to be: | =

M-c
[}

— Omax =

1.5875
1o.o4~(f””m)
L(12.7)(1.5875)3

- [750 P

Boundary Condition @ (x = 0cm), (vy = 0), (6; = 0):

o EI(0)=2% —

004(0)2 4 C,(0) + Co —

e E/(0)=% —0.04(0) +C; —

Continuity Condition @(x = 4cm), (v2 = v1), (62 = 61):

o Elvi =Elw

— 208 _0.02(0.04)2 = C3(0.04) + C4 —

\C4 = 1.067e

5]

o Flvy = Elv,

— 0% 004(0.04) = Cs

C3 = —0.0008

4 < x<6

e £/vy; = —0.0008x + 1.067e—5

bh®

12

= £(0.0127)(0.0015875)° = 4.23e—12m*

H
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o Steel: 1»(200e9)(4.23e—12) = —0.0012(0.06) + 9.07e—5 — v, = l.4e—5m = ‘ vo = 0.044 mm

e Aluminum: v,(70e9)(6.67e—12) = —0.0012(0.06) +9.07e—5 — [v, = 0.126 mm |

Check Against Theory:

o Steel: v=ZEL(6x— L) = v = [rrmmmess—13]6(0.06) — 0.08] = [v; = 0.044 mm]

L (6x — L) = v = [zsmampe15][6(0.06) — 0.08] — [v; = 0.126 mm]|

e Aluminum: v = 70e9)(4.23e—12)

This checks out!!

Comparison

*See attached Excel File

Support Condition: Simply Supported

100g load at x = 12

Fixed End Free End
Pin Support . . -
Measured point of deflection Roller Support

atx =14

Figure 9: A simply supported beam showing the applied load

—L—g Support Reactions:

e Y F =0
0 | } A e S F,=0=C,+A, —IN

e > My =0=—-1(0.12m) + C,(0.23m)
} Ay L 1N } ¢y |C, =0.522N], |A, = 0.478N|

(a) Loading Condition for Simply Supported Beam
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Internal Forces Calculations:

Vv M
For 0 < x < 12:
A
— 12cm — e > F=0=A -V = A =
V =0.478 N
Ay e X Mut=0=—-Ax—M, —
M1:AyX

(a) Cut section 0 < x < 12

. \Ml = 0.478x Nm\

b3 cm ——

vV M For 12 < x < 23:
A * X Ff=0=
— 12 cm — A, —IN—=V,|V =-0.522 N
> My=0=
Ay IN “AX+1(x — 0.12) — Mo

(b) Cut section 12 < x < 23
. \ Mo = —0.478x + 0.12 Nm\

Figure 11: Shear and Moment Calculations for Simply Supported Beam

V (N) M (Nm)
T 0.0574
0.478 —
0 o 2 X (em)
-0.522 I 0 B >3 > x (cm)
(a) Shear Force Diagram V/(x) (b) Bending Moment Diagram M(x)

Figure 12: Internal force diagrams for Simply Supported Beam

Maximum Bending Stress:

e Using the Flexure formula and M, = 0.12: 0 = #

 0.0574(Ls8zommy
= Omax = Tramyasersy L1070 MPa
Boundary Conditions:

e @ (x=0cm), (v =0),(6; =0)

Elastic Curve: — EI(0) = %4783(0)3 4 C;(0) + G, —
¢ 0<x<12 ~ EI(0) = %4702 4 C; — [, =0]

~ Elvi = M(x) = 0.4783x o @ (x=0.23cm), (v» = 0), (6, = 0 = 1)

— Elvy, = 2%4783,2 4
' g - EI(0) = 0.5217(%533) - 0.05740%732 + C3(0.23) +

_ _ 04783 3
Elvy =27 + Cix+ G Cs — 4.603e—4=023C5+ Ca
o 12<x<23 - EI(0) = 222171(0.23)? — 0.0574(0.23) + C3 —
|C3=—5.97e—4] [ G4 = 5.976e—4|

- Elv, = M(x) = 0.5217x — 0.0574

- E/vé = O.5217%x2 —0.0574x + C5 Continuity Condition @(x = 12cm), (v = vy), (62 = 61):
— Elv, = 0.5217% — 0.0574% + o 0.4783%12° 1 C;(0.12) = 0.5217%12 — 0.0574%1% +
C3X + C4 C3(012) + C4

Elastic Curve Final:
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12 <x <23
0<x<12
o Elv, = %3203 _ 07,2 _ 0.000597x +
o Elvy = 241833 0.0005976

Deflection: We know the moment of inertia to be: /| = 22 = 1(0.0127)(0.0015875)% = 4.23e—12m*

o Steel: 1,(200€9)(4.23e—12) = 1.9e—4 — |v, = 0.225 mm |

o Aluminum: v»(70e9)(4.23e—12) = 1.9e—4 —

Check Against Theory:

o Steel: v =GER (L2~ 12— Xx%) = v = [g5amed e aaas1[0.237 — 0.122 - 0.097] —

[0 a3 1[0.232-0.122-0.09%] — [v2 = 0.803 mm |

o Aluminum: v = ZEX([2p2—x?) — v =

These are fairly closel!!

Comparison

*See attached Excel File

Part 2: Bending of Acrylic Rod in two orientations

Experimental Calculations
e Deflection of the first orientation (cross section 6.35 mm): 2.13mm

e Deflection of the second orientation (cross section 10.0 mm): 0.83mm

7N

———————

(a) Condition 1 (Lower /) (b) Condition 2 (Higher I)
Figure 15: Experimental comparison of acrylic rod orientations.

Theoretical Calculations

Support Reactions:

AX I 1l4cm I N Z /__X _

M —>
A oY F=0=A—-1N
A YN e > My=0=M—0.14(1)

M =0.14 Nm

(a) Free-Body Diagram of the Cantilevered Beam
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Ma Vo Mo Internal Forces Calculations:
A X 1 For 0 < x < 14:
4 ¢ SF =0= A~ IN+V[V=0]
(a) Cut Section 0 < x < 14 ¢ > Mt =0+ Cy
Figure 17: Shear and Moment Calculations
M (Nm)
V (N)
1
> x (cm > x (cm

0 14 (cm) 14 (cm)

(a) Shear Force Diagram V/(x)

(b) Bending Moment Diagram M(x)

Figure 18: Internal force diagrams for the beam calculated in Part 1.

Elastic Curve:
o Elv, = M(x) = x
o Elvi=%+C;

[ ] E/V1:%3+C1X+C2

Elastic Curve: v = &%, E =3 GPa

Vertical Beam:

e/ = L(6.35mm)(10mm)> =
5.29e—10mm?*

= 1 0.14%3 _

* V= Gt 3 —L0-576 mm
_ Mc __ (0.14)(0.005) __

® 0 =" = Goe10 —[1.32MPa

FEA
Vertical configuration:
e y-displacement: -0.576 mm

e normal stress: 1.111 Mpa

Boundary Condition @ (x = 0cm), (v = 0), (6 = 0):

o EI(0)=2 +Ci(0)+Cr —

EI0)=%+C —

Horizontal Beam:

(10mm)(6.35mm)3 = 2.13e—10mm*

= 1 0.143 __
V= Genpizae—to) 3 — [ 14288 mm

_ (0.14)(0.003175) _
= T(2134e-10) 2.08 MPa
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Study name: vertical config(-Default-)
Plot type: Static displacement Displacementl

W (mm)
7224605
l 5750602
~ 115%e-01
- 770
| 2300601
2878601
-3454e-01

T b
000 020 040 0.60 0.80 100 s

Parametric Distance

UX {mm)

(a) Vertical Displacement Chart (b) Simulation in SOLIDWORKS FEA

Figure 21: Vertical Displacement Measurements

Study name: vertical config(-Default-)
Plot type: Static nodal stress Stress1

150067 - ......... ......... ......... .........
1.00+087-
5.00+05

SY (N/m*2)

0.00+00

SY (Nfm"2)

-5.00+05

000 020 040 060 080 1.00

Parametric Distance

— SY(Nm"2)

(a) Vertical Stress

Figure 22: Vertical Stress Measurements

Horizontal configuration:
e y-displacement: -1.421 mm

e normal stress: 2.063 Mpa

VA

(b) Simulation in SOLIDWORKS FEA

1111e+06
l 9.056¢+05
_ 7.005e+05

_ 4953¢+05

_ 2902405
85042404
12018405

| -3253¢+05
5304405
7355405

-9.407e+05
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Study name: horiz config(-Default-)
Plot type: Static displacement Displacementl
0.00
-0.20
-0.40

Y ()
1860204

1A1%-01

UY {mm)
=
=

240001
. azee
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I T104e01
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| omge01
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Lazies0
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Parametric Distance
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(a) Horizontal Displacement Chart (b) Simulation in SOLIDWORKS FEA

Figure 23: Horizontal Displacement Measurements

Study name: horniz config(-Default-)
Plot type: Static nodal stress Stress1

SZ [Mim"2)

Zqume

26560006

|
0.00 0.20 0.40 0.60 0.80 1.00 | aoss
Parametric Distance I:?::
—— SZ(N/m2)
(a) Horizontal Stress (b) Simulation in SOLIDWORKS FEA

Figure 24: Horizontal Stress Measurements

Comparison

*See attached Excel File
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Part 3: Visualize the strain field for the acrylic beam

I a
] \
umml.mmm\\m\m\ a

(a) Polar Acrylic 1 (b) Polar Acrylic 2 (c) Zoomed in view

Figure 25: Polariscope visualization of the acrylic beam strain field.

As stress is applied to the beam, the area around which the beam is mounted experiences variable amounts of stress.
The stress concentration appears to be closest to the side of the acrylic that is mounted/pressed against the base
of the supporting mount. This is because the primary shear force occurs at this point since it is experiencing a
moment.

Conclusion

This project demonstrated how different support conditions affect the deflection of a material by comparing the
behavior of steel and aluminum under simply supported and cantilevered support conditions. We also observed
how moment of inertia affects beam deflection by measuring an acrylic beam in two different orientations. As
expected, aluminum consistently deflected more than steel under every loading condition due to its significantly
lower Modulus of Elasticity.

Our theoretical calculations and FEA results generally agreed with each other. The simply supported experimen-
tal deflections were close to the expected deflection. However, the cantilevered experimental deflections showed
a consistent and substantial difference (about a 50% difference for both materials) compared to both the FEA
and the theoretical calculations. Since the error was proportional for both steel and aluminum, it indicates that a
similar error affected the measurements for both of these loading conditions. It is likely that when we performed the
experimental calculations for the deflection of the cantilevered beam, either the measuring tool was not properly
calibrated, or we placed the load too quickly onto the measuring tool, causing both the steel and the aluminum to
deform more than expected.

Regarding support conditions, although we used different locations for the load for each of the setups, we can
still conclude that a simply supported beam provides greater resistance to deflection than a cantilevered beam
because it has two support forces at each end of the beam rather than the cantilevers singular support force and
moment. Thus, a simply supported beam will displace less. Finally, the acrylic beam tests confirmed that a greater
moment of inertia results in a decrease in beam deflection, demonstrating the importance of beam orientation.



